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Abstract

Genome-wide association studies (GWASs) have identified multiple susceptibility loci for

Alzheimer’s disease (AD), which is characterized by early and progressive damage to the

hippocampus. However, the association of hippocampal gene expression with AD and the

underlying neurobiological pathways remain largely unknown. Based on the genomic and

transcriptomic data of 111 hippocampal samples and the summary data of two large-scale

meta-analyses of GWASs, a transcriptome-wide association study (TWAS) was performed

to identify genes with significant associations between hippocampal expression and AD. We

identified 54 significantly associated genes using an AD-GWAS meta-analysis of 455,258

individuals; 36 of the genes were confirmed in another AD-GWAS meta-analysis of 63,926

individuals. Fine-mapping models further prioritized 24 AD-related genes whose effects on

AD were mediated by hippocampal expression, including APOE and two novel genes

(PTPN9 and PCDHA4). These genes are functionally related to amyloid-beta formation,

phosphorylation/dephosphorylation, neuronal apoptosis, neurogenesis and telomerase-

related processes. By integrating the predicted hippocampal expression and neuroimaging

data, we found that the hippocampal expression of QPCTL and ERCC2 showed significant

difference between AD patients and cognitively normal elderly individuals as well as corre-

lated with hippocampal volume. Mediation analysis further demonstrated that hippocampal

volume mediated the effect of hippocampal gene expression (QPCTL and ERCC2) on AD.

This study identifies two novel genes associated with AD by integrating hippocampal gene
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expression and genome-wide association data and reveals candidate hippocampus-medi-

ated neurobiological pathways from gene expression to AD.

Author summary

The hippocampus is a potential neuroimaging endophenotype for Alzheimer’s disease

(AD). This study identifies genes whose expression in hippocampal tissue is associated

with AD and establishes the pathways from hippocampal gene expression to hippocampal

volume to AD. We demonstrate that 24 genes are associated with AD in hippocampal tis-

sue, and these genes are enriched for AD-related biological processes of amyloid-beta for-

mation, phosphorylation/dephosphorylation, neuronal apoptosis, neurogenesis and

telomerase-related processes. We further show that hippocampal volume mediates the

effects of the hippocampal gene expression of QPCTL and ERCC2 on AD. These findings

improve our understanding of the genetic and neural mechanisms of AD.

Introduction

Alzheimer’s disease (AD) is a neurodegenerative disorder clinically characterized by progres-

sive dementia and pathologically featured by senile plaques composed of amyloid beta peptide

(Aβ) and intracellular neurofibrillary tangles (NFTs), which themselves are composed of

hyperphosphorylated tau [1,2]. AD is a highly heritable disease with an estimated heritability

of 58%-79% [3], emphasizing the importance of exploring the genetic mechanisms of AD.

Despite rapid progress in utilizing genome-wide association studies (GWASs) and meta-analy-

ses to identify AD-related genetic variants [4–11], the pathogenic mechanisms of the identified

genetic loci in AD remain largely unknown.

Expression quantitative trait loci (eQTLs) are considered links between GWAS loci and dis-

ease susceptibility [12,13]. By integrating the large-scale gene expression data of a given tissue

and disease-related GWAS data, transcriptome-wide association study (TWAS) has been pro-

posed as a powerful approach to identify genes with significant associations between gene

expression in certain tissues and the disease of interest [14–16]. By incorporating transcrip-

tomic data of available human tissues and GWAS data of AD, several TWAS studies have con-

firmed multiple AD-related genes identified by GWASs and found novel genes that have not

been previously reported [17–21]. Although the inclusion of all available tissues in these

TWAS studies could improve the power, they provide little tissue-specific information, which

is important for exploring pathogenic mechanisms of AD because tissues show different

eQTLs [22] and TWAS is more reliable for trait-related tissues than for trait-unrelated tissues

[23].

In neuroimaging studies, hippocampal atrophy is the most prominent imaging feature of

AD [24–26]. Most of the neuropathological hallmarks (neurofibrillary tangles, neuronal loss,

synaptic loss, amyloid plaques, and glial responses) of AD can be observed in the hippocam-

pus, and neurofibrillary tangles, neuronal and synaptic loss are present in the hippocampus at

an early stage of AD, which are closely associated with the progression of AD [27]. Moreover,

eQTLs of hippocampal tissue are significantly enriched for AD-GWAS-identified associations

[28]. These findings indicate that hippocampal tissue is an ideal candidate for AD-TWAS and

that hippocampal volume is a potential neuroimaging marker to investigate the mediation

effect of the hippocampus on the association between hippocampal gene expression and AD.
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In this study, we first determined the relationship between each single nucleotide polymor-

phism (SNP) and hippocampal gene expression using whole genome sequencing (WGS) data

and hippocampal tissue RNA-seq data provided by GTEx [22]. Second, based on the obtained

SNP-expression associations and SNP-AD associations identified by AD-GWAS, TWAS was

performed to identify hippocampus- and AD-related genes, which were defined as genes

whose cis-genetically regulated expression (cis-GReX) in hippocampal tissue was associated

with AD. Third, fine-mapping analysis was used to prioritize these genes, and associations of

the expression of these genes in four other subcortical tissues (amygdala, caudate, nucleus

accumbens and putamen) with AD were also studied. The identified genes were functionally

annotated by network topology-based analysis, statistical over-representation test and hippo-

campal-based functional module detection. Finally, we further validated the identified genes in

Alzheimer’s Disease Neuroimaging Initiative (ADNI) neuroimaging data and established the

pathway from hippocampal gene expression to hippocampal volume to AD diagnosis. A sche-

matic overview of the study design is presented in Fig 1.

Results

Prediction models for hippocampal gene expression

We established correspondences between SNPs and the expression of each gene in hippocam-

pal tissue and calculated the weighted value of each SNP in predicting the expression of the

gene using the WGS and RNA-seq data of 111 hippocampal samples from GTEx. For each

gene, QTLtools (https://qtltools.github.io/qtltools/) [29] was used to perform conditional anal-

ysis to identify cis-eQTLs with independent effects on gene expression. The GTEx V7 pipeline

(https://github.com/hakyimlab/PredictDB_Pipeline_GTEx_v7) was applied to train prediction

models for hippocampal expression of 15,831 protein-coding genes with the nested cross vali-

dated elastic-net [14]. A prediction model was significant if the average Pearson correlation

coefficient between predicted and measured gene expression during nested cross validation

was greater than 0.1 and the estimated p-value for this statistic passed the multiple testing cor-

rection threshold of familywise error (FWE) (pc< 0.05/15,831 = 3.16 × 10−6). Among the

15,831 protein-coding genes, we built significant hippocampal gene expression prediction

models for 15,017 genes (pc< 0.05, FWE corrected), indicating a rather high success rate

(94.9%). The average Pearson correlation coefficients between predicted and observed expres-

sion levels during nested cross validation in hippocampal tissue for these genes

(mean ± SD = 0.73 ± 0.12, range 0.40–0.96) are shown in Fig 2A, which were relatively high,

suggesting good performance of these prediction models. For each gene, the prediction model

generated the weighted value for each SNP’s relative contribution to the gene’s expression level

in hippocampal tissue.

Identification and validation of AD-related genes using TWAS

TWAS can integrate the gene expression of certain tissues and GWAS data to test correlations

between cis-GReX and disease/complex traits [14–16]. In our study, summary-PrediXcan

(S-PrediXcan) [15] was used to perform TWAS to identify significant associations between

AD and gene expression in hippocampal tissue. Two sets of GWAS summary statistics of AD

were used: the meta-analysis (n = 455,258 including 71,880 AD or AD-by-proxy and 383,378

controls) [4] collected from the Alzheimer’s disease working group of the Psychiatric Geno-

mics Consortium (PGC-ALZ), the International Genomics of Alzheimer’s Project (IGAP), the

Alzheimer’s Disease Sequencing Project (ADSP) and the UK Biobank (UKBB) was used as the

discovery sample. The updated GWAS meta-analysis of IGAP (n = 63,926 including 21,982

AD and 41,944 controls) [11] was used as the replication sample. Based on SNP-AD
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Fig 1. A schematic overview of the study design. AD = Alzheimer’s disease; ADNI = Alzheimer’s disease Neuroimaging Initiative; ADSP = Alzheimer’s

disease Sequencing Project; cis-GReX = cis-genetically regulated expression; FOCUS = Fine-mapping of causal gene sets; GWAS = Genome-wide association

study; IGAP = International Genomics of Alzheimer’s Project; PGC-ALZ = Alzheimer’s disease working group of the Psychiatric Genomics Consortium;

TWAS = Transcriptome-wide association study; UKBB = UK Biobank.

https://doi.org/10.1371/journal.pgen.1009363.g001
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associations obtained from the GWAS summary statistics of 455,258 individuals (the discovery

sample) and SNP-expression associations obtained from the hippocampal gene expression

prediction models, we found 54 genes whose cis-GReX values in hippocampal tissue were sig-

nificantly associated with AD at the 5% false discovery rate (FDR) threshold (qc< 0.05) (Fig

2B and S1 Table). Based on the GWAS summary statistics of 63,926 individuals from IGAP

(the replication sample) and the hippocampal gene expression prediction models, we success-

fully replicated 36 of 54 genes at a nominal threshold of p< 0.05 with consistent direction of

z-scores between discovery and validation stage, among which 23 genes passed the FDR cor-

rection for multiple testing (qc< 0.05) in the replication samples (S1 Fig and S1 Table).

Fine-mapping prioritizes AD-related genes

The reliability of TWAS-identified AD-related genes was challenged by linkage disequilibrium

(LD) among the SNPs and coregulation of gene models [23]. Here, FOCUS (fine-mapping of

causal gene sets) [30] was further used to prioritize the 36 genes for AD by assigning a proba-

bility for each gene based on prediction modules, recommended LD reference data, and

AD-GWAS summary statistics (n = 455,258 including 71,880 AD or AD-by-proxy and

383,378 controls). FOCUS inferred whether each of the 36 TWAS-identified genes was

included in credible set at the nominal confidence level (90%). Among the 36 TWAS-identi-

fied AD-related genes, FOCUS prioritized 24, which were in credible sets (Fig 3 and S1 Table).

Specificity for hippocampal tissue

To determine whether the 24 identified AD-related genes specifically affect the hippocampus,

we also investigated the associations of the expression of these genes in four other subcortical

tissues with AD. These subcortical tissues included the amygdala, caudate, nucleus accumbens

and putamen, and the volume loss of the latter two nuclei appears earlier than that of the hip-

pocampus in AD patients [31]. The same pipeline used for the hippocampus was applied to

train prediction models and to perform TWAS for the other four tissues. The average Pearson

correlation coefficients between predicted and observed expression levels for the amygdala,

Fig 2. Gene expression prediction models of hippocampal tissue (A) and TWAS results of AD (B). (A) Average Pearson correlation coefficients of 15,017

significant hippocampal gene expression prediction models (pc< 0.05, FWE corrected). (B) Manhattan plot of all TWAS associations of AD in the discovery

stage. Each point represents a single gene, with physical position in chromosome plotted on the x-axis and z-score of the association statistics between gene and

AD plotted on the y-axis. Transcriptome-wide significant threshold (qc< 0.05, FDR corrected) is highlighted as black dotted lines and the significant

associations are labeled with gene names. AD, Alzheimer’s disease; FDR, false discovery rate; FWE, familywise error; TWAS, transcriptome-wide association

study.

https://doi.org/10.1371/journal.pgen.1009363.g002
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caudate, nucleus accumbens and putamen are shown in S2 Fig. We used the prediction models

of the four tissues and the AD-GWAS summary statistics (n = 455,258 including 71,880 AD or

AD-by-proxy and 383,378 controls) to perform TWAS. Manhattan plots of the TWAS results

Fig 3. Genes identified by TWAS and FOCUS. The green circle shows the genes identified by the AD-TWAS in hippocampal tissue, each point

represents a single gene, with physical position in human genome plotted on the x-axis and -log10(p) of association between cis-GReX in hippocampal

tissue and AD plotted on the y-axis. The color gradients represent significant levels and points located in the green and darker green regions indicate

significant associations with AD at the 5% FDR threshold. The blue circle shows the AD-TWAS results of validation stage. The orange circle shows the

results of FOCUS, the 24 genes showed in the figure are included in 90% credible gene sets. AD, Alzheimer’s disease; cis-GReX, cis-genetically regulated

expression; FDR, false discovery rate; FOCUS, fine-mapping of causal gene sets; TWAS, transcriptome-wide association study.

https://doi.org/10.1371/journal.pgen.1009363.g003
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are shown in S3–S6 Figs. We compared the TWAS results of the 24 prioritized AD-related

genes between hippocampal tissue and other tissues (Fig 4A). The gene expression prediction

models of six genes were not established successfully in the amygdala, which meant that the

SNPs could not predict the gene expression in this tissue. The gene expression of ERCC2,
EXOC3L2, PTPN9,HLA-DRB5 and PCDHA4 was associated with AD only in hippocampal tis-

sue at the 5% FDR threshold (Fig 4B). More genes showed shared genetic contributions to AD

in at least two tissues. For example, AD was affected by the gene expression of CD3EAP in the

hippocampus and amygdala; TOMM40, PVR and RELB in the hippocampus and nucleus

accumbens; DMPK and SNRPD2 in the hippocampus and putamen; and QPCTL and BCAM
in the hippocampus and caudate. In addition, some genes showed extensive cross-tissue effects

on AD, such as AD was associated with the expression of APOE, CEACAM19, CLPTM1,
DMWD, KAT8, PRSS36, PVRL2, SIX5, TRAPPC6A, PPP1R13L and PPP1R37 in at least three

tissues.

Functional annotation of AD-related genes

To identify the functional relationship and the involved biological processes of the 24 priori-

tized AD-related genes, we first constructed a protein-protein interaction (PPI) network by

network topology-based analysis embedded in the WEB-based gene set analysis toolkit (Web-

gestalt, https://www.webgestalt.org) [32]. The PPI network contained 22 seed genes (priori-

tized AD-related genes) and 50 top-ranking neighbors based on network proximity (Fig 5A

and S2 Table), PVRL2 and PRSS36 were not included in the network due to the lack of connec-

tivity. APP, a known susceptibility protein of AD [33], was a hub node of the network. Notably,
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Fig 4. TWAS results of different subcortical tissues. (A) The bubble plot shows TWAS results of different subcortical tissues. The x-axis shows the 24

prioritized AD-related genes, the y-axis shows the five types of brain tissues. The size and the color of the bubbles demonstrate the significance of each gene in

TWAS of a given tissue. The gray bubbles represent non-significant associations in TWAS, the hollow bubbles reflect the genes whose prediction models are

not established successfully. (B) The bar plots show the FDR corrected p-values in TWAS for the five genes associated with AD only in hippocampal tissue (qc
< 0.05, FDR corrected). AD, Alzheimer’s disease; FDR, false discovery rate; TWAS, transcriptome-wide association study. �qc< 0.05.

https://doi.org/10.1371/journal.pgen.1009363.g004
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the prioritized geneQPCTL was directly connected with APP, suggesting their molecular inter-

action and AD relevance. In addition, the AD-related genes we identified were included in the

common network with APP, which means that they may have coherent biological functions.

Second, the statistical over-representation test of PANTHER [34] was used to identify enriched

gene ontology (GO) terms of biological process for the generated network. The 72 genes in the

network were enriched in 260 GO biological process terms (qc< 0.05, Benjamini-Hochberg

FDR (BH-FDR) corrected) (S3 Table). These GO terms were divided into different ontologies

according to hierarchical relations. Specifically, the 72 genes were mainly over-represented in

a GO subclass of biological processes for neuron-related functions, such as neuron apoptotic

process (fold enrichment = 28.56, qc = 0.000776), positive regulation of neuron death (fold

enrichment = 11.54, qc = 0.0324), negative regulation of neuron apoptotic process (fold enrich-

ment = 9.27, qc = 0.0215), axonogenesis (fold enrichment = 5.07, qc = 0.0344), and central ner-

vous system development (fold enrichment = 3.34, qc = 0.0215). The genes were also

correlated with amyloid-beta and tau phosphorylation related processes, including positive

regulation of amyloid fibril formation (fold enrichment > 100, qc = 0.0181), regulation of amy-

loid-beta formation (fold enrichment = 26.78, qc = 0.022), positive regulation of tau-protein

kinase activity (fold enrichment > 100, qc = 0.00178), and regulation of protein dephosphory-

lation (fold enrichment = 9.99, qc = 0.0174), which are well-known neuropathology of AD. In

addition, they were associated with telomerase-related processes, such as telomerase holoen-

zyme complex assembly (fold enrichment > 100, qc = 0.018) and positive regulation of telome-

rase activity (fold enrichment = 23.8, qc = 0.0267) (Fig 5B). These results demonstrated that

the 22 prioritized AD-related genes were interconnected in a common PPI network and con-

tributed to the neuropathological process of AD.

Modulization analysis of AD-related genes in the hippocampal network

Functional modules were built using the HumanBase online tool [35] (https://hb.flatironinstitute.

org/) in the context of hippocampal tissue networks. The 72 genes in the constructed PPI net-

work were clustered into five cohesive functional modules in hippocampal tissue. Module 1 (M1)

included 13/24 prioritized AD-related genes (APOE, BCAM, CEACAM19,DMPK,DMWD,

ERCC2, EXOC3L2, PPP1R13L, PPP1R37, PTPN9, PVR,QPCTL and SIX5), module 2 (M2)

contained 3/24 prioritized AD-related genes (CD3EAP, TOMM40 and SNRPD2) and module 3

(M3) contained 1/24 prioritized AD-related genes (KAT8) (Fig 5C). In the enrichment analysis

(qc< 0.05, BH-FDR corrected), M1 genes were enriched for neurogenesis-, neuron differentia-

tion-, amyloid-beta formation- and dephosphorylation-related processes, suggesting that a large

proportion of detected AD-related genes aggregated in the neuron-relevant functional module

and critical processes for AD in the hippocampus. M2 genes were enriched for ribonucleoprotein

complex- and protein localization to mitochondrion-related processes. M3 genes were enriched

for autophagy-, immune system development- and histone modification-related processes (S4

Table), indicating that several detected AD-related genes could modulate common cellular func-

tions in the hippocampus.

Hippocampal gene expression differences in ADNI data

In the TWAS and FOCUS analyses, we prioritized 24 genes with significant differences in the

predicted cis-GReX in the hippocampus between the AD and control groups. We further vali-

dated this finding in ADNI imaging genetics dataset (http://www.loni.usc.edu/). We used the

genotyping data, structural brain MRI data and demographic information from ADNI1,

ADNIGO and ADNI2. After quality control and preprocessing of genetic and hippocampal

volume data from brain MRI (see Materials and methods), 1410 ADNI subjects were finally
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included. At baseline, the 1410 ADNI subjects were diagnosed as cognitively normal (CN,

n = 415), mild cognitive impairment (MCI, n = 720) and AD (n = 275). After up to 13 years of

follow-up, the diagnoses were 317 CN, 416 MCI and 599 AD, and 78 individuals were

excluded due to uncertain diagnoses. The baseline MCI patients (n = 567) with a follow-up

period of more than 2 years were further divided into the conversion (MCI-C, n = 300) group

and the stable (MCI-S, n = 267) group. The demographic information of the 1332 subjects

with definite diagnoses is shown in Table 1.

For each gene, Predixcan [14] was used to predict the cis-GReX of the gene in hippocampal

tissue for each ADNI subject by integrating genotypic data of the subject with the weighted

value of each SNP derived from the prediction models. For each of the 24 AD-related genes,

binary logistic regression was performed to test the difference in gene expression in hippocam-

pal tissue (predicted cis-GReX) between the AD (n = 599) and CN (n = 317) groups, control-

ling for age, sex, education and the first 4 components of multidimensional scaling (MDS).

The hippocampal expression of QPCTL, DMPK, ERCC2, CD3EAP, APOE, PPP1R37 and
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Fig 5. Functional annotation of AD-related genes. (A) The PPI network containing 22 seed proteins (marked in bold and dark red) and 50 top-ranking

neighbors. (B) The bubble plot shows the enriched GO terms of biological process (the most specific subclass of each ontology is shown). The x-axis

shows the fold enrichment of statistical over-representation test for each term (y-axis). The size of the bubbles reflects the number of related enriched

terms of biological process. The color of the bubbles demonstrates the significance of each term based on the statistical over-representation test. (C)

Hippocampal-based functional modules formed by AD-TWAS genes (marked in bold) and tightly connected genes. AD, Alzheimer’s disease; FDR, false

discovery rate; GO, gene ontology; M, module; PPI, protein-protein interaction; TWAS, transcriptome-wide association study.

https://doi.org/10.1371/journal.pgen.1009363.g005
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PVRL2 was significantly different between the two groups (Table 2 and Fig 6A). The hippo-

campal expression of QPCTL and APOE was also significantly different between the MCI-C

and MCI-S groups (Fig 6B).

Hippocampal gene expression and hippocampal volume

Since the identified AD-related genes showed abnormal expression in the hippocampus and

AD is characterized by hippocampal atrophy, we further wanted to identify which of these

genes are associated with hippocampal volume. Seven genes were validated in ADNI whose

expression in hippocampal tissue was associated with AD. We performed linear regression

between the expression of each validated AD-related gene in the hippocampus and the mean

hippocampal volume in the 1332 ADNI subjects while controlling for age, sex, education, MR

field strength, clinical diagnosis and the first 4 components of MDS. We found that the mean

hippocampal volume was nominally correlated with the expression of QPCTL (Beta = 0.045,

p = 0.029) and ERCC2 (Beta = -0.051, p = 0.015) in the hippocampus (Fig 6C and 6D). In addi-

tion, we performed multiple linear regression to identify the total effect of the 24 genes on the

mean hippocampal volume of AD (n = 599), controlling for all confounders. The 24 genes

impacted the hippocampal volume of AD (p = 0.039, R2 = 0.062). R2 is the proportion of vari-

ance of the dependent variable (hippocampal volume) that can be explained by the indepen-

dent variables (predicted cis-GReX in hippocampal tissue of the 24 genes).

Given that the expression of QPCTL and ERCC2 in hippocampal tissue was associated with

hippocampal volume, we further explored whether the expression of these two genes in other

Table 1. Demographics and MRI data of the included sample.

Demographic variables CN MCI AD

Number 317 416 599

Age (years) 74.18 ± 5.63 73.75 ± 7.40 74.64 ± 7.35

Sex (Male/Female) 157/160 256/160 354/245

Education (years) 16.50 ± 2.68 16.01 ± 2.90 15.53 ± 2.88

Hippocampal volume (ml) 3738.88 ± 445.46 3474.60 ± 529.06 3002.31 ± 538.27

Data are shown as mean ± standard deviation.

CN = cognitively normal, MCI = mild cognitive impairment, AD = Alzheimer’s disease.

https://doi.org/10.1371/journal.pgen.1009363.t001

Table 2. Seven TWAS significant genes were validated in the ADNI neuroimaging data.

Gene AD TWAS ADNI validation

TWAS_Z TWAS_P OR 95%CI SE P

QPCTL -23.332 2.10 × 10−120 0.760 0.656 to 0.882 0.076 2.89 × 10−4

DMPK -22.672 8.54 × 10−114 0.774 0.666 to 0.900 0.077 8.77 × 10−4

ERCC2 17.870 2.01× 10−71 1.199 1.040 to 1.382 0.073 1.25 × 10−2

CD3EAP 14.916 2.60× 10−50 1.396 1.199 to 1.625 0.078 1.70 × 10−5

APOE -12.901 4.43× 10−38 0.814 0.707 to 0.938 0.072 4.37 × 10−3

PPP1R37 -6.710 1.95× 10−11 0.834 0.722 to 0.964 0.074 1.41 × 10−2

PVRL2 4.458 8.26× 10−6 1.166 1.010 to 1.346 0.073 3.65 × 10−2

OR-values, 95% CI, SE-values and P-values are from binary logistic regression.

AD = Alzheimer’s disease, ADNI = Alzheimer’s Disease Neuroimaging Initiative

TWAS = transcriptome-wide association study, OR = odds ratio, CI = confidence interval, SE = standard error.

The abbreviation of genes is referred to at https://www.ncbi.nlm.nih.gov/gen.

https://doi.org/10.1371/journal.pgen.1009363.t002
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subcortical tissues was also associated with the volumes of the corresponding structures. We

used the same procedure as that of the hippocampus, wherein the predicted cis-GReX for each

gene was calculated by integrating genotypic data of the ADNI subjects and the prediction

models of the amygdala, caudate, nucleus accumbens and putamen, respectively. For the 1332

subjects we included, two individuals were excluded due to the failure of the segmentation of

the four brain structures. We explored the correlations between the predicted cis-GReX of the

two genes (QPCTL, ERCC2) in each of the three brain tissues (caudate, nucleus accumbens

and putamen) and the corresponding volumes (n = 1330). There was no significant correlation

between the cis-GReX of the two genes in these tissues and corresponding brain structure vol-

umes (S5 Table). In contrast to the significant joint effect of the 24 prioritized AD-related

genes on the hippocampal volume of AD, these genes showed no joint effect on the volumes of

the amygdala, caudate, nucleus accumbens and putamen in AD patients (n = 599) (S7 Fig).

Taken together, these results suggest that these genes show greater impacts on hippocampal

volume than volumes of other subcortical nuclei.

Fig 6. ADNI neuroimaging data analysis. (A) The bar plot shows the significant difference of hippocampal tissue cis-GReX of QPCTL, DMPK, ERCC2,
CD3EAP, APOE, PPP1R37 and PVRL2 between AD and CN groups. The p-values are calculated by binary logistic regression between the hippocampal tissue

cis-GReX of the seven genes and diagnoses. (B) The bar plot shows the significant difference of hippocampal tissue cis-GReX of QPCTL and APOE between

MCI-C and MCI-S groups. (C and D) The scatter plots show correlations between the hippocampal tissue cis-GReX of QPCTL (C), ERCC2 (D) and mean

hippocampal volume using linear regression. The y-axis shows the residual of mean hippocampal volume after regressed age, sex, education, MR field

strength, first 4 components of MDS and clinical diagnoses. (E and F) The mediation analysis shows that hippocampal volume mediates the effect of the

hippocampal tissue cis-GReX of QPCTL (E) and ERCC2 (F) on the diagnosis of AD. The colors of the lines demonstrate the positive correlation (orange color)

and the negative correlation (blue color) in the analysis. AD, Alzheimer’s disease; cis-GReX, cis-genetically regulated expression; CN, cognitively normal;

MCI-C, mild cognitive impairment conversion; MCI-S, mild cognitive impairment stable; MDS, multidimensional scaling.

https://doi.org/10.1371/journal.pgen.1009363.g006
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Hippocampal volume mediates the effect of hippocampal gene expression

on AD

As an important intermediate phenotype of AD, hippocampal volume may mediate the associ-

ation between gene expression (QPCTL and ERCC2) in hippocampal tissue and AD. To iden-

tify the hippocampus-mediated pathway from gene expression to AD, we performed

mediation analysis, in which the predicted cis-GReX of QPCTL or ERCC2 in hippocampal tis-

sue was set as an independent variable, mean hippocampal volume as a mediator variable, and

disease state (AD versus CN) as a dependent variable. The significance of the indirect effect

was tested by calculating bias-corrected 95% bootstrap confidence interval with 5000 resam-

pling, and the statistical significance of other effects was set at p< 0.05. For QPCTL, we found

a significant indirect effect (effect = -0.181, 95% CI = -0.302 to -0.065) from cis-GReX to the

disease state, indicating that the expression of QPCTL in hippocampal tissue could affect AD

via modulating hippocampal volume. In addition, the direct effect (effect = -0.196, p = 0.034,

95% CI = -0.378 to -0.014) from the cis-GReX of QPCTL in hippocampus to the disease state

was also significant, which represented a portion of the effect of the gene expression on AD

being not mediated by hippocampal volume (Fig 6E). For ERCC2, the hippocampal volume

could mediate the effect of the cis-GReX on the disease state with a significant indirect effect

(effect = 0.219, 95% CI = 0.101 to 0.352), but the direct effect from the cis-GReX of ERCC2 on

the disease state was not significant (p = 0.727, 95% CI = -0.145 to 0.208) (Fig 6F). These find-

ings indicate that the expression of ERCC2 in hippocampal tissue could affect AD mainly by

modulating hippocampal volume.

Discussion

In this study, we jointly used TWAS and fine mapping approaches to identify genes whose

expression in hippocampal tissue was associated with AD and screened 24 AD- and hippocam-

pus-related genes involved in crucial biological processes of AD and functional modules in

hippocampal tissue. We further validated the associations of QPCTL, DMPK, ERCC2,
CD3EAP, APOE, PPP1R37 and PVRL2 with AD in ADNI data, and found relations of QPCTL
and APOE with the conversion from MCI to AD. We also found that hippocampal volume

mediated the associations of hippocampal tissue cis-GReX of ERCC2 and QPCTL with AD.

These findings provide candidate genes linked to AD by regulating gene expression in hippo-

campal tissue and underline the importance of the hippocampus in explaining the genetic

risks of AD.

This study extends AD-related genetic loci identified by prior AD-GWAS studies [4–6,8–

11] by providing evidence that some loci (APOE, TOMM40, PVRL2, EXOC3L2, KAT8 and

HLA-DRB5) may lead to AD by affecting the gene expression levels in the hippocampus.

Among the 24 AD- and hippocampus-related genes identified in this study, previous studies

only provide clues for the associations of hippocampal expression of PRSS36, KAT8,
HLA-DRB5 [4], TOMM40 [20], CEACAM19 and PVRL2 [21] with AD. However, some indi-

rect evidence may support other associations. For example, we found that the expression of

APOE in hippocampal tissue was associated with AD and the conversion from MCI to AD,

which is consistent with the concept that APOE is an important genetic risk gene for AD [36]

and with the reduced APOE protein level in the hippocampus in patients with AD [37]. In

addition, we identified 18/24 genes that have not been found in GWAS, which may be due to

differences in methodology or the lack of statistical power in GWAS. However, our findings

are highly consistent (19/24) with previous TWAS results [17–21].

Comparing with previous TWAS and GWAS studies, we found two novel genes, PTPN9
and PCDHA4, affecting AD through hippocampal expression. Given the two loci are non-
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significant in AD GWASs, our analysis leveraged the hippocampal gene expression data and

combined the effects of SNPs on each gene by TWAS to increase statistical power for discov-

ery. Our prediction models successfully established the relationship between SNPs and gene

expression for PTPN9 and PCDHA4. In addition, compared to the other four brain tissues, the

expression of the two genes was associated with AD only in hippocampal tissue, suggesting

that mechanistically related tissue and high-performance prediction models of TWAS are

important for identifying context-specific disease genes. The functional annotation revealed

that PTPN9 participated in neurogenesis (GO:0022008) and dephosphorylation (GO:00

16311), and both PTPN9 and PCDHA4 were involved in nervous system development

(GO:0007399). Modulization analysis based on the extended AD-related gene set and hippo-

campal-based network revealed that PTPN9 was a member of the M1 functional module

affecting neuron-related biological processes. PTPN9 belongs to the protein tyrosine phospha-

tase family, which is involved in numerous important biological processes [38], and PTPN9
knockout mice show severe neurodevelopmental disorders [39]. In addition, PCDHA4 is a

member of the protocadherin alpha gene family, and neural cadherin-like cell adhesion pro-

teins encoded by these genes play a critical role in establishing complex brain networks of neu-

ronal connections [40]. Knockdown of mouse protocadherin alpha proteins results in

abnormalities in learning and memory [41]. Together, both functional annotation and previ-

ous studies provided evidence that PTPN9 and PCDHA4may affect hippocampus-dependent

AD development.

By combining network topology-based analysis, statistical over-representation test and hip-

pocampal-based functional module detection, we can better understand the function of the

identified AD- and hippocampus-related genes. These genes were interconnected in the PPI

network and interacted with the causal proteins of AD, such as a key PPI network member,

APP, which could generate neurotoxic Aβ peptide and play a crucial role in the development

of AD [33,42]. The component genes of the constructed PPI network were related to many

important processes for AD, such as amyloid-beta formation- and phosphorylation/dephos-

phorylation-related biological processes. In the AD brain, phosphorylation/dephosphorylation

imbalance is an important mechanism for hyperphosphorylation of tau [43]. In addition, neu-

ronal apoptosis- and neurogenesis-related processes have been identified, and in the AD brain,

adult hippocampal neurogenesis is impaired with immature differentiation of neurons [44].

Telomerase is expressed in mature human hippocampal neurons [45], and telomerase-defi-

cient mice with short telomeres exhibit loss of neurons in the hippocampus [46]. Neuronal

telomeres are shorter in hippocampal neurons of AD [47]. Therefore, telomere-related pro-

cesses may participate in AD pathogenesis. Moreover, 17/24 prioritized AD-related genes were

involved in hippocampal-based functional modules and enriched in key pathways of AD, fur-

ther supporting their pathogenicity in the etiology of AD.

In the present study, we also investigated the relationship of the predicted gene expression

in hippocampal tissue with hippocampal volume in ADNI data. We found that QPCTL and

ERCC2 were associated with hippocampal volume and that hippocampal volume mediated the

effect of the two genes on AD. The 24 AD- and hippocampus-related genes had combined

effects on the hippocampal volume of AD. These associations were only found in the hippo-

campus (compared with the amygdala, caudate, nucleus accumbens and putamen). Thus, hip-

pocampal volume, which is an important endophenotype of AD, could fill gaps between gene

expression in hippocampal tissue and AD. In our analysis, QPCTL interacted with APP, and

QPCTL and ERCC2 were involved in M1, which is related to many important pathways for

AD. Thus, the two genes may affect hippocampal volume by modulating neurogenesis, neuron

differentiation, amyloid-beta formation and dephosphorylation related processes and further

increase the risk of AD.
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There are limitations in our study. First, although probabilistic fine-mapping was used in

this study, it only yields credible sets of genes that contain potential causal genes by estimating

the probability of causality, so it could be used to prioritize genes rather than to identify true

causal genes. Further biological validation of the discovered genes needs to be performed in

future studies. Second, the discovery and replication samples are partially overlapped (11.9%

of the discovery sample and 84.7% of the replication sample). The discovery patients contain

the AD-by-proxy phenotype, and the replication patients have defined diagnosis. We used the

GWAS summary data with the largest sample size as the discovery sample to increase the sta-

tistical power. Due to the sample overlap, the replication sample could exclude the influence of

AD-by-proxy phenotype, but not replicate the results in an independent dataset, therefore, the

reproducibility of the identified genes in different dataset is challenged. To eliminate the effect

of sample overlap on the reliability of the TWAS results, we used two independent databases

to validate our results and successfully replicated 20/36 TWAS genes (S1 Text and S6 Table).

In addition, we used the multiple trait analysis of GWAS (MTAG) [48] approach to perform

meta-analysis using discovery and replication GWAS summary statistics while accounting for

potential sample overlap, and 25/36 genes were successfully replicated (qc< 0.05) (S1 Text and

S7 Table). Taken together, we could replicate 31/36 of our identified genes (S8–S10 Figs); how-

ever, a completely independent large-scale GWAS data of AD will be needed to fully validate

our discovery.

Materials and methods

Ethics statement

All the data used in this study were obtained from public data repositories and got approval by

their medical ethics review committees. Details about informed consent of GTEx can be found

in the original paper [22] (dbGaP accession number phs000424.v7. p2). For ADNI, written

informed consent was provided for all participants, and the study protocol was approved by

each participating sites’ institutional review board (http://www.loni.usc.edu/). For the GWAS

summary data of AD, all cohorts obtained written informed consent and each study protocol

was approved by the institutional review boards. Full details can be found in the original paper

[4,11]. We followed the instructions of accessing summary data on the websites (https://ctg.

cncr.nl/software/summary_statistics, https://www.niagads.org/datasets/ng00075).

Data resources

WGS and RNA-seq data of hippocampal tissue. WGS and RNA-seq data of 111 hippo-

campal samples from GTEx Version 7 were used to build prediction models for gene expres-

sion in hippocampal tissue based on genomic variants. The pipelines for processing WGS and

RNA-seq data were available at the GTEx portal (https://gtexportal.org/home/). For WGS

data, the reads were annotated according to the human reference genome (hg19/GRCh37).

The sample-level quality control (QC) included genotyping call rate per individual (> 98%),

sex concordance check and identity check. The SNP-level QC included SNP call rate (> 85%),

Hardy-Weinberg equilibrium (HWE) (p> 1 × 10−6), minor allele frequency (MAF) (> 1%),

and with non-ambiguous strand (no A/T or C/G SNPs). The obtained SNPs were pre-phased

by SHAPEIT2 [49] and imputed by IMPUTE2 [50] with the 1000 Genomes Phase 3 reference

panel. A total of 7,920,040 SNPs were finally selected from the imputed SNPs based on the cri-

teria of biallelic and single-character allele codes only, non-ambiguous stranded SNPs, SNP

call rate = 100%, HWE p> 1 × 10−6, MAF > 0.01 and IMPUTE2 info quality score > 0.8.

GTEx standard quantification and QC procedures were conducted for hippocampal tissue

RNA-seq data by GTEx consortium. All reads were aligned to the human reference genome
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(hg19/GRCh37) based on GENCODE v19 reference annotations [51] (https://www.

gencodegenes.org/human/release_19.html). The same pipeline used for the hippocampus was

applied to process WGS and RNA-seq data of the amygdala, caudate, putamen and nucleus

accumbens (S8 Table).

GWAS summary data of AD. In the discovery stage, GWAS summary statistics of AD

was derived from a meta-analysis collected from the PGC-ALZ (n = 17,477), IGAP

(n = 54,162), ADSP (n = 7,506) and UKBB (n = 376,113), including 455,258 (71,880 AD or

AD-by-proxy and 383,378 controls) unrelated individuals of European ancestry. Details about

genotyping, quality control and genome-wide meta-analysis can be found in the original paper

[4]. In UKBB, each proxy case had a clear family history of AD. In the validation stage, we rep-

licated our findings in a GWAS meta-analysis of diagnosed AD from the updated IGAP

(n = 63,926 including 21,982 AD and 41,944 controls) [11]. 54,162 participants from IGAP

were overlapped between the discovery and validation samples.

Neuroimaging and genotyping data of ADNI. The Alzheimer’s Disease Neuroimaging

Initiative (ADNI) is a comprehensive imaging genetics dataset containing genetic, neuroimag-

ing, biochemical and clinical data. The genotyping data, structural brain MRI data and demo-

graphic information used in this study were downloaded from the ADNI data repository

(http://www.loni.usc.edu/). ADNI was designed as an ongoing, longitudinal project. Initially,

ADNI1 enrolled participants of CN, MCI and AD. Subsequent studies, including ADNIGO

and ADNI2, further extended the study with additional cohorts and followed up with roll-

overs. The 757 participants from ADNI1 were genotyped by Illumina Human610-Quad Bead-

Chip, and the 793 participants from ADNIGO/2 were genotyped by Illumina

HumanOmniExpress BeadChip (http://www.illumina.com). The intensity data was processed

with GenomeStudio v2009.1. Detailed information for the QC and processing procedures is

shown in the S1 Text. After QC and imputation, 1423 individuals and 8,035,650 autosomal

SNPs were retained for subsequent analysis.

The ADNI repository provides hippocampal volume data and volumetric data of the amyg-

dala, caudate, nucleus accumbens and putamen calculated by FreeSurfer (http://surfer.nmr.

mgh.harvard.edu/) with the pipeline for cross-sectional comparisons; for details, please see the

manual (http://www.loni.usc.edu/). First, QC was performed for hippocampal volumetric

data. One individual without hippocampal volume data, eleven individuals with failed segmen-

tation and one individual without clinical data were excluded. In the remaining 1410 individu-

als, the hippocampal volume data of 1377 individuals were extracted from the baseline data,

and those of 33 individuals were extracted from the nearest time point data to the baseline.

Second, QC was performed for the volumetric data of the amygdala, caudate, nucleus accum-

bens and putamen in the 1410 individuals who had qualified hippocampal volumetric data,

and two individuals were excluded due to the failure of brain tissue segmentation of these

structures.

Predicting hippocampal gene expression by SNPs

For each gene, conditional analysis in QTLtools (https://qtltools.github.io/qtltools/) [29] was

used to identify cis-eQTLs with independent effects on gene expression in a cis-window of ± 1

Mb from the transcription start site (TSS). In this analysis, forward variable selection was used

to decide the number of independent signals per gene expression at a moderate threshold

(p< 0.01), and backward elimination was used to assign nearby variants to the independent

signals. For each candidate SNP, the genotype of each sample was encoded as 0, 1 and 2 based

on the counts of the effect allele. For the 111 hippocampal samples, we used the candidate

SNPs to predict gene expression in hippocampal tissue with an additive genetic model. After
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cis-eQTLs mapping, the prediction models were only built for protein-coding genes

(n = 15,831). Prediction models were built using the nested cross validated elastic-net proce-

dure following the GTEx V7 pipeline (https://github.com/hakyimlab/PredictDB_Pipeline_

GTEx_v7) [14]. First, the 10-fold cross-validated elastic-net was performed 5 times to estimate

the significance of the models. The 111 hippocampal samples were split into 5 folds randomly,

one-fold was removed at a time, the remaining samples (four folds) were used to train the pre-

diction models by elastic-net with 10-fold cross-validation to tune the lambda parameter, and

then the prediction models were applied to the samples of the removed fold to evaluate the cor-

relations between the predicted and measured expression levels of the hippocampal samples.

The performance of each prediction model was assessed by the average Pearson correlation

coefficient between predicted and measured expression across subjects, which was the aver-

aged value of the 5 times 10-fold nested cross validation tests. A prediction model was signifi-

cant if the estimated p-value for the average Pearson correlation coefficient passed the multiple

testing correction threshold of FWE (pc< 0.05/15,831 = 3.16 × 10−6). In addition, the thresh-

old value of the average Pearson correlation coefficient was greater than 0.1 to avoid the nega-

tive correlation according to the suggestion of the pipeline. Second, for each significant

prediction model, a new elastic-net model was trained using 10-fold cross validation to tune

the lambda parameter based on all hippocampal samples to calculate weights. The pipeline

could avoid the bias caused by using the same data to tune the parameter and assess the perfor-

mance. The same procedure as that used for hippocampal tissue was applied to establish pre-

diction models for the tissues of amygdala (15,827 protein-coding genes), caudate (15,926

protein-coding genes), putamen (15,629 protein-coding genes) and nucleus accumbens

(15,937 protein-coding genes). The sex, 15 expression residuals, top 3 genetic principal com-

ponents and sequencing platforms were controlled during both eQTLs mapping and predic-

tion model construction. The prediction models generated the weighted value of each

candidate SNP’s relative contribution to the gene’s expression level in the corresponding

tissue.

Identifying AD-related genes by TWAS

In this study, TWAS was used to identify AD-related genes by testing correlations between cis-
GReX and AD diagnosis with S-PrediXcan [15], which was embedded in the MetaXcan frame-

work (https://github.com/hakyimlab/MetaXcan). In TWAS, SNP-AD associations were

derived from GWAS summary data of AD, SNP-expression associations were assessed by the

weighted value of each SNP to corresponding gene expression in the hippocampal and other

tissues, and LD reference set was created by the prediction models. Multiple testing was cor-

rected by FDR method (qc< 0.05).

Fine-mapping TWAS-identified AD-related genes

To exclude the possibility that TWAS-identified AD-related genes resulted from the genomic

architecture of LD or co-regulation of gene models, FOCUS [30] was used to estimate the pos-

terior inclusion probabilities for causality while accounting for the correlation structures of

LD and co-regulation of gene expression prediction models. As a recommended strategy to

improve the power, FOCUS also included SNP weights for gene expression in nonhippocam-

pal tissues (PrediXcan weights of the GTEx v7 data (http://predictdb.org/) [14] and FUSION

(functional summary-based imputation) weights of the METSIM, NTR, YFS, CMC data

(http://gusevlab.org/projects/fusion/) [16]. FOCUS estimated credible gene sets based on the

posterior inclusion probabilities at the 90% confidence level.

PLOS GENETICS Hippocampal TWAS and neuroimage analysis for AD

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1009363 February 25, 2021 16 / 22

https://github.com/hakyimlab/PredictDB_Pipeline_GTEx_v7
https://github.com/hakyimlab/PredictDB_Pipeline_GTEx_v7
https://github.com/hakyimlab/MetaXcan
http://predictdb.org/
http://gusevlab.org/projects/fusion/
https://doi.org/10.1371/journal.pgen.1009363


Network topology-based analysis

We conducted network topology-based analysis using Webgestalt [32] with reference to the

human PPI of the Biological General Repository for Interaction Datasets (BIOGRID) (Build

3.5.167) [52]. For the seed genes we mapped to the PPI network, random walk analysis was

performed to expand the network by ranking all genes based on their network proximity with

the seed genes. The resulting PPI network was constructed with the input seeds and the 50

top-ranking neighbors.

Statistical over-representation test

The generated network was investigated by performing a statistical over-representation test

using PANTHER classification system (v.14.0) [34] based on GO biological processes. For the

genes in the PPI network, a statistical over-representation test was applied to detect statistical

over representation of input genes compared to the human genome reference gene list. We

used Fisher’s exact test to calculate the p-value based on the comparison between the number

of input genes in a certain term and the number of reference genes in the same term. Fold

enrichment represents the ratio of the value of observed gene number over that of expected.

We used the BH-FDR correction for multiple testing (qc< 0.05).

Finding functional modules composed of the identified AD-related genes

Gene network analysis was used to test whether the identified AD-related genes were involved

in certain cohesive gene clusters in hippocampal tissue by the HumanBase online tool [35].

Functional enrichment was performed for the resulting functional modules using GO terms.

The statistical significance of each GO term was tested by one-sided Fisher’s exact test, and

multiple testing was corrected by BH-FDR (qc< 0.05).

Mediation analysis

The PROCESS macro for SPSS (v3.4) was used for mediation analysis [53]. Only genes with

both intergroup expression differences between the AD and CN groups (p< 0.05) and correla-

tions with hippocampal volume (p< 0.05) were selected for the mediation analysis. In this

model, the hippocampal cis-GReX for each gene was defined as an independent variable, the

mean hippocampal volume as a mediator variable, the disease states (AD versus CN) as a

binary dependent variable, hippocampal volume was adjusted by a linear regression with MR

field strength, and the covariates included age, sex and education. For the dichotomous out-

come in our analysis, PROCESS generated the direct effects, indirect effects, and paths from

the mediator variables to the binary dependent variables by logistic regression. The coefficients

between independent variables and mediator variables were estimated by ordinary least

squares (OLS) regression.

Detailed protocols of the methods used above are available in https://dx.doi.org/10.17504/

protocols.io.bp4amqse.

Supporting information

S1 Table. Results of TWAS and FOCUS.

(XLSX)

S2 Table. Genes in protein-protein interaction (PPI) network by network topology-based

analysis.

(XLSX)
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S3 Table. Enriched gene ontology (GO) terms of biological process by the statistical over-

representation test of PANTHER.

(XLSX)

S4 Table. Five functional modules in the context of hippocampal tissue networks.

(XLSX)

S5 Table. Correlations between gene expression of QPCTL and ERCC2 and volumes in

four subcortical nuclei.

(DOCX)

S6 Table. TWAS results of two independent data sets of GWAS summary statistics of AD.

(XLSX)

S7 Table. TWAS results of the GWAS summary statistics from MTAG.

(XLSX)

S8 Table. Quality control and imputation of WGS data.

(DOCX)

S9 Table. The prediction model summary of hippocampus.

(XLSX)

S10 Table. The prediction model summary of amygdala.

(XLSX)

S11 Table. The prediction model summary of caudate.

(XLSX)

S12 Table. The prediction model summary of nucleus accumbens.

(XLSX)

S13 Table. The prediction model summary of putamen.

(XLSX)

S14 Table. TWAS summary statistics in discovery and validation stage.

(XLSX)

S15 Table. TWAS summary statistics of amygdala, caudate, nucleus accumbens and puta-

men.

(XLSX)

S16 Table. TWAS summary statistics of UKBB and meta-analysis of MTAG.

(XLSX)

S1 Fig. Manhattan plot of all TWAS associations in validation stage. Each point represents

a single gene, with physical position in chromosome plotted on the x-axis and z-score of asso-

ciation statistics between gene and AD plotted on the y-axis. Significant associations (p< 0.05,

FDR corrected) are labeled with gene names.

(PDF)

S2 Fig. The average Pearson correlation coefficients between the predicted and observed

expression levels of prediction models of the amygdala, caudate, nucleus accumbens and

putamen.

(PDF)
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S3 Fig. Manhattan plot of all TWAS associations based on amygdala tissue.

(PDF)

S4 Fig. Manhattan plot of all TWAS associations based on caudate tissue.

(PDF)

S5 Fig. Manhattan plot of all TWAS associations based on nucleus accumbens tissue.

(PDF)

S6 Fig. Manhattan plot of all TWAS associations based on putamen tissue.

(PDF)

S7 Fig. Multiple linear regression between the expression of the 24 genes and the volumes

of hippocampus, amygdala, caudate, nucleus accumbens and putamen in AD patients. The

x-axis shows the five subcortical tissues, the y-axis shows the R2 obtained from multiple linear

regression, which represents the proportion of variance of the dependent variable that can be

explained by the independent variables. R2, coefficient of determination.

(PDF)

S8 Fig. The Venn diagram of the identified genes in the extended validation of TWAS

results. The blue circle represents the 36 genes identified in the discovery stage of TWAS (qc<
0.05, FDR corrected) and validated at nominal threshold of p< 0.05 with consistent direction

of z-scores between discovery and validation stage; The grey circle represents the 25 genes

identified by using two independent data sets of GWAS summary statistics of AD; The yellow

circle represents the 74 genes identified by using the GWAS summary statistics accounting for

sample overlap.

(PDF)

S9 Fig. Manhattan plot of all TWAS associations using GWAS summary statistics of AD-

by-proxy phenotype from UKBB and the hippocampal tissue prediction models.

(PDF)

S10 Fig. Manhattan plot of all TWAS associations using GWAS summary statistics from

MTAG and the hippocampal tissue prediction models.

(PDF)

S1 Text. Quality control and imputation for genotype data from ADNI. Extended valida-

tion of TWAS results.

(DOCX)
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